Quarrying & Mining Magazine
Technology

Fine material washers – ROCK STARS or RECALCITRANTS?

Lessons from across the Ditch.

The fine material washer – also known as a sand screw – is historically one of the most maligned of sand washing instruments. JIM HANKINS, the principal of Rivergum Industries in Endagine NSW, recaps the history of the screw and explains why it is actually one of the most underrated – and underestimated – tools for effective sand processing.

SAND SCREWS – possibly one of the oldest mechanical means of washing sand – have been used for decades.

Mimico now distributes Superior Industries’ equipment

Matamata Industrial Machinery Imports (better known as Mimico) is now the sole New Zealand distributor for Superior Industries’ washing systems and conveying equipment.
As demand for more stringent material specifications grows and quarries progress further into their reserves, the need to wash aggregate materials increases,
it says.
“Superior Industries supplies wet processing solutions to meet the needs of the market and will wash and classify bulk materials to an impeccable specification.”
The product range on offer includes Superior’s Aggredry Dewatering Washer for fine materials and Alliance Low
Water Washer, says Mimico, and both will be on display at the QuarryNZ conference in Hamilton next month.
Other products include the RazerTail Truck Unloader (one of Superior’s conveyors here now) and the TeleStacker Conveyor for radial stacking.
“Innovation is the slingshot that catapulted Superior to becoming the number one conveyor manufacturer in the world for bulk material handling,” says Mimico and the company’s advancements during the latter half of the 20th century revolutionised the technology.
Chris Gray, Mimico’s general manager says; “It’s important that we provide our customers with industry leading equipment and, in Superior’s range of washing systems and conveying equipment, we are definitely adding that to
our offering.
“Also, and just as important for Mimico as a family company, it’s great to be working with a company that shares similar values to ourselves.”
Jeff Steiner from Superior Industries says the company sees “great potential” in our market.
“We are intensely proud of our equipment. At Superior, providing innovative products is the key component to our success.”
More information:
www.superior-ind.com.

Their use, misuse and abuse abound. In Australasia, there are a diverse range of views on the viability of sand screws with regards to washing sand for construction aggregates.

Sand screws are variously categorised as inefficient, unreliable mechanical nightmares, responsible for fine sand losses, and more recently compared to other production equipment, whereby the stated throughput of most manufacturers is questioned.

Several issues have led to “urban myths” about sand screws – in Australia, at the very least. While commenting on and refuting some of these myths, this article will also attempt to detail developments on the use of sand screws as a primary sand washing process.

What is a sand screw?

A sand screw is essentially a helix or helical surface around a central cylindrical shaft.

The design is commonly attributed to Archimedes (based on the Archimedes pump or screw pump).

Sand screws are known by a variety of names in a range of industries, most related to dewatering, and have been used in Australia to wash salt, wash and separate plastic, carry out particle separation with copper processing, wash and recycle glass, dewater mineral sands and coal fines, and wash sand, including manufactured sand.

The basic functions of sand screws have been covered previously. However, some clarification and reinforcement of the basic operations might be useful for the industry. Essentially, the sand screw acts as an auger, separating the sand from the pool of water. The feed material is introduced, usually vertically, through the opening in the feed box, generally with water. A correctly designed or engineered sand screw has a separation plate, to force the sand “down” in the pool of water. For fine material to escape or overflow the weirs, it has to go under this plate and then rise in the pool of water. The sand screws turn at about 60 peripheral metres per minute (200 fpm); depending on the diameter of the helix or spiral, this equates to 15 to 30 revolutions per minute for typical production sizes.

When sufficient sand drops to the bottom of the tub or pool of water, it is gently lifted by the auger action of the helix or spiral. Sitting at an angle of 18°, the sand screw begins to auger sand out of the pool of water. A curved plate typically exists under the helix/spiral. As the sand leaves the pool of water, the excess water drains through the sand and runs into the flushing trough.

The flushing trough is provided with water, at the upper end of the sand screw, with sufficient velocity to flush the fine sand particles that have flowed into the flushing trough back into the pool of water. This allows the dewatering effect to operate at the highest efficiency.

As the sand travels up the curved plate and tub wall, it continues to dewater. With a basic sand screw, most manufacturers will advise a likely output of 80 percent solids or 20 percent moisture. This should be sufficient to send material up a typical stacker. In comparison, a hydrocyclone, on its own, will discharge only about 60 to 65 percent solids.

“Essentially, the sand screw acts as an auger, separating the sand from the pool of water.
The feed material is introduced, usually vertically, through the opening in the feed box,
generally with water.”

Urban myths

The problems and urban myths surrounding sand screws arise when poor copies are sold and operated, or sand screws are sold with limited knowledge on how they operate.

In Australia, there are poorly designed or poorly engineered sand screws that do not have the correct tub or weir size.

There are ones without flushing troughs, and no port to inject water. There are sand screws that have been installed at the wrong angle. When not enough water is used, the pool of water begins to thicken in density or specific gravity.

The higher this density or specific gravity goes, the larger the particle size that will overflow the weir.

If the sand screw is run at the wrong speed, particularly too fast, then more particle sizes stay suspended in the pool of water, and don’t settle. This allows more particle sizes to overflow the weir.

Sand screws are sized on the maximum amount of water they can process while retaining certain size particles. The speed of sand screws is determined by the amount of fine material in the raw feed.

If you do not run a sand screw with the correct amount of water, or if you do not run it at the correct speed, you will lose fines and you may have a wetter product (wetter than expected).

If you don’t replace a worn feed box, you may break a shaft when the sand feed subsequently wears out the wall of the shaft. If you don’t replace worn or broken wear shoes, also known as flight shoes, then you will wear out the helix/spiral.

Numerous personnel in the field of selling sand washing equipment will recite problems with sand screws.

However, the majority of those problems occur when the equipment is run with a lack of knowledge. Sand screws are the most efficient way to wash sand for construction aggregates.

Figure 1. Illustration of the patented AggreDry dewatering and underflow return.

Evolution

In the 100 or so years sand screws have been operating, new motors, new gearboxes and new bearings have been incorporated into the units.

Each manufacturer has a specific way of dealing with the lower end of outboard bearing. Similarly, variations on gearboxes and arrangements with motors are prevalent.

A variety of wear materials are available for the wear shoes, as well.

However, one major enhancement in the past decade was the development of the AggreDry washer.

Superior Industries supplies a range of sizes of these unique machines, with the patented AggreDry dewatering and underflow return, incorporated into the dewatering screens, integrated into the design of the sand screw. Figure 1 provides an illustration of this process.

Moisture content for the AggreDry washer can be as low as eight percent, with producers advising they can load trucks immediately, with material coming straight off the stacker. This eliminates the need for stockpile “drying” to enable product to be loaded out.

Once the fundamentals of sand screw operation are understood, they retain fines, at the desired size, use less water and produce a drier product. In this time of rising electricity costs, they also use less power than alternatives.


Subscribe to Quarry and Mining Magazine >>


Related posts

Using CS-Vue software to manage tougher rules

Quarry & Mining Magazine

CoC oral exam dates and explanation

Quarry & Mining Magazine

Two new guidance documents – WorkSafe

Quarry & Mining Magazine